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Abstract. We construct bosonic and fermionic eigenstates for the generalized Sutherland models
associated with arbitrary reduced root systems respectively, through W -symmetrization and W -
anti-symmetrization of Heckman–Opdam’s nonsymmetric Jacobi polynomials. Square norms of
the nonsymmetric Heckman–Opdam polynomials are evaluated from their Rodrigues formulae.
TheW -symmetrization andW -anti-symmetrization of the nonsymmetric polynomials enable us to
evaluate square norms of bosonic and fermionic eigenstates for the generalized Sutherland models.

1. Introduction

In 1971, Sutherland introduced a quantum many-body system on a unit circle (0 � θj <

2π ) [29, 30],

H := −1

2

N∑
j=1

∂2

∂θ2
j

+
∑

1�j<k�N

g

sin2(θj − θk)
(1.1)

which is now called the Sutherland model. The model has the same number of independent
and mutually commutative conserved operators as its degrees of freedom, and therefore is a
quantum integrable system. The conserved operators have joint eigenvectors which can be
expressed by products of the Jastrow-type wavefunction and the Jack polynomials. The Jack
polynomials not only enable us to calculate the exact correlation functions of the model [8,31]
but also provide powerful tools in the theory of condensed matter physics [11].

Quantum mechanical systems which describe many particles with inverse-square-type
long-range interactions in a one-dimensional space are, in general, called the Calogero–
Sutherland (CS) models [3, 24, 29, 30]. A systematic construction of the commutative
conserved operators of the CS models are provided from the Dunkl–Cherednik operator
formulations [4,7,26]. Generalizations of the formulations are applied to a wide class of the CS
models and clarify the relationships with other integrable models [9,12–14]. Among them, the
CS models with trigonometric interactions, for example, the Sutherland model (1.1) are studied
in the context of the double affine Hecke algebras. The double affine Hecke algebras were
introduced by Cherednik to reconstruct the theories of the Macdonald polynomials [5,6,18,19].
In the differential setting [26], they also give an unified treatment of the conserved operators
and the orthogonal polynomials appearing in their eigenstates. Lapointe and Vinet introduced
the raising operators which create the bosonic eigenstates of the Sutherland model [15, 16].
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As for mathematics, they presented the Rodrigues formula for the Jack polynomial and proved
integrality of its coefficients. But its extension to the Sutherland models associated with other
root systems has not been established.

In previous papers [21, 23], we presented an algebraic construction of the nonsymmetric
Macdonald polynomials and evaluated square norms of the Macdonald polynomials through
symmetrization of scalar products of the nonsymmetric Macdonald polynomials. In this
paper, we consider bosonic and fermionic eigenstates for the generalized Sutherland models
associated with arbitrary reduced root systems through W -symmetrization and W -anti-
symmetrization of the nonsymmetric Heckman–Opdam polynomials. This paper is organized
as follows: in section 2, we briefly describe the affine root systems and the degenerate double
affine Hecke algebras following Opdam and Cherednik. The commutative Dunkl–Cherednik
operators are introduced. In section 3, we provide the Rodrigues formulae for the nonsymmetric
Heckman–Opdam polynomials and evaluate their square norms. By use ofW -symmetrization
and W -anti-symmetrization method, we algebraically construct the bosonic and fermionic
eigenstates for the generalized Sutherland models and evaluate their square norms in section 4.
The final section is devoted to concluding remarks.

2. Degenerate double affine Hecke algebras

2.1. Extended affine Weyl groups

We start with the definition of the extended affine Weyl group which acts on the affine coroot
system [5,10]. Let V be anN -dimensional real vector space with a positive definite symmetric
bilinear form 〈·,·〉. Let R ⊂ V be an irreducible reduced root system which corresponds to
the simple Lie algebra of type A,B,C,D,E, F and G. We take a root basis � = {αi |i ∈ I }
of R where I = {1, 2, . . . , N} a set of indices. A decomposition of R is fixed by the
following disjoint union: R = R+ ∪ R−, where R+ is the set of positive roots relative to
� and R− = −R+. We denote by R∨(⊂ V ) the coroot system which has the elements
α∨ := 2α/〈α, α〉, corresponding to the roots α ∈ R. Let �∨ = {α∨|α ∈ �} be a root basis of
R∨. We define the fundamental weights �i and coweights �∨

i such that 〈α∨
i , �j 〉 = δij and

〈�∨
i , αj 〉 = δij , respectively. We use the standard notations Q, Q∨, P and P ∨ for the root

lattice, the coroot lattice, the weight lattice and the coweight lattice respectively,

Q :=
⊕
i∈I

Zαi ⊂ P :=
⊕
i∈I

Z�i

Q∨ :=
⊕
i∈I

Zα∨
i ⊂ P ∨ :=

⊕
i∈I

Z�∨
i

(2.1)

and Q+, P+,Q
∨
+ and P ∨

+ for the corresponding lattices with Z+ instead of Z. The reflection on
V with respect to the hyperplane orthogonal to α∨ ∈ R∨ is defined by

sα∨(µ) := µ− 〈α∨, µ〉α for µ ∈ V. (2.2)

The reflections associated with the simple roots {sα∨ |α∨ ∈ �∨}, i.e., the simple reflections,
generate the Weyl groupW . The simple reflections are related to each other by (sα∨

i
sα∨

j
)mij = 1,

wheremij = 2, 3, 4, 6 ifα∨
i andα∨

j are connected by 0, 1, 2, 3 laces in the dual Dynkin diagram
$, respectively. The length l of w ∈ W is defined from a reduced (shortest) expression
w = sjl . . . sj2sj1 . We denote the set of distinct weights lying in the W -orbit of µ ∈ P by
W(µ) and a unique dominant weight in W(µ) by µ+(∈ P+). We define the order � on P by

ν � µ (µ, ν ∈ P)⇔ µ− ν ∈ Q+.

We turn to the affine coroot system R̂∨ := R∨ × ZK ⊂ V̂ := V ⊕ RK . Let
R̂+ = {α∨ + kK|α ∈ R∨, k > 0} ∪ {α∨ ∈ R∨

+ } be the set of positive affine coroots
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and let Î = {0, 1, . . . , N} be a set of indices. Let θ∨ be the highest root in R∨ and
�̂∨ = {α∨

i |i ∈ Î } the root basis of R̂∨, where α∨
0 := −θ∨ + K . We take a pairing

on V̂ × V as 〈λ̂, µ〉 = 〈λ,µ〉 − h for λ := λ + hK ∈ V̂ and µ ∈ V and define the
fundamental alcove C = {µ ∈ V |〈α∨, µ〉 < 0, α∨ ∈ �̂∨}. The affine reflection on V̂ relative
to α̂∨ = α∨ + kK ∈ R̂∨, (α∨ ∈ R∨) is defined by

sα̂∨(λ̂) := λ̂− 〈λ, α∨〉α̂∨ for λ̂ = λ + hK ∈ V̂
which induces the dual action on V through the pairing 〈·,·〉,

sα̂∨〈µ〉 = µ− (〈α∨, µ〉 − k)α for µ ∈ V.
The affine reflections associated with the simple roots {sα∨ |α∨ ∈ �̂∨} generate the affine Weyl
group Ŵ . Let τν, (ν ∈ P) be the translation on V̂ ,

τν(λ̂) := λ̂− 〈λ, ν〉K for λ̂ = λ + hK ∈ V̂
which induces the translation on V ,

τν〈µ〉 = µ− ν for µ ∈ V.
One sees that the elements {τκ |κ ∈ P ∨} are mutually commutative. The affine Weyl group
Ŵ contains the element τα = s−α∨+Ksα∨ , (α ∈ Q) which is interpreted as a translation
corresponding to the root α ∈ Q. In fact, the affine Weyl group is isomorphic to the semidirect
product Ŵ � W � τQ.

We define the extended affine Weyl group by a semidirect product W̃ := W�τP . One finds
that W̃ is defined so as to preserve the affine coroot systems R̂∨. Let. := {w̃ ∈ W̃ |w̃(C) = C}.
The extended affine Weyl group is isomorphic to a semidirect product W̃ � . � Ŵ . Let O
be a set of indices of the image of α∨

0 by the automorphism of the dual Dynkin diagram $. A
weight µ ∈ P+ satisfying 0 � 〈α∨, µ〉 � 1 for every α∨ ∈ R∨

+ is called a minuscule weight.
It is known that the set of minuscule weights is given by {�r |r ∈ O}, where we put �0 = 0
(see, for example, [5]). One sees a decomposition τ�r

= ωrwr with ωr ∈ . and wr ∈ W if
and only if r ∈ O. Each ωr is distinguished by ωr(α0) = αr . Note that ω0 = w0 = 1. Let
r∗ ∈ O be the index such that αr∗ = ω−1

r (α0).
We extend the definition of the length to an element w̃ ∈ W̃ as

l(w̃) := |R∨
w̃| where R∨

w̃ := R̂∨
+ ∩ w̃−1R̂∨

− (2.3)

which is consistent with that forw ∈ W , that is l = l(w). HereR∨
w̃

is the set of positive coroots
which become negative coroots by the action of w̃. If we take a reduced expression of w̃ ∈ W̃
as w̃ = ωrsil . . . si2si1 , the set R∨

w̃
is explicitly given by

R∨
w̃ = {α(1) = αi1 , α

(2) = si1(αi2), . . . , α
(l) = si1si2 . . . sil−1(αil )} (2.4)

which is independent of the decomposition of w̃. For w̃ = τλ, we have

R∨
τµ

= {α∨ + kK|α∨ ∈ R∨
+ , 〈α∨, µ〉 > k � 0} ∪ {α∨ + kK|α∨ ∈ R∨

−, 〈α∨, µ〉 � k > 0}.
(2.5)

We take a set of parameters {kα ∈ C|α ∈ R} such that kα = kw(α) for w ∈ W . We write
ki = kαi , (i ∈ I ). Define

ρ = 1
2

∑
α∈R+

α ρk = 1
2

∑
α∈R+

kαα. (2.6)

Let P++ := P+ + ρ be the regular dominant weight lattice. We see 〈α∨, µ〉 � 0 for µ ∈ P++

and α∨ ∈ �∨.
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2.2. Degenerate double affine Hecke algebras

Following Opdam [26] and Cherednik [4, 6], we introduce degenerate double affine Hecke
algebras DH. The commutative elements of DH give the commutative differential operators
in End(C[P ]) which are referred to as the Dunkl–Cherednik operators [4, 7] and uniquely
characterize Heckman–Opdam’s nonsymmetric Jacobi polynomials as their eigenvectors.

Definition 2.1 (Degenerate double affine Hecke algebra). The degenerate double affine
Hecke algebra DH is generated over the field C by the elements {si, ωr,D�∨

j |i ∈ Î , r ∈
O, j ∈ I } satisfying

(i) (sisj )
mij = 1 for 0 � i, j � N

(ii) ωrsiω
−1
r = sj if ωr(α

∨
i ) = α∨

j for r ∈ O
(iii) DλDµ = DµDλ for λ,µ ∈ P ∨

(iv) siD
λ = Dλsi if 〈λ, αi〉 = 0 for 1 � i � N

s0D
λ = Dλs0 if 〈λ,−θ〉 = 0

(v) siD
λ −Dsi(λ)si = ki if 〈λ, αi〉 = 1 for 1 � i � N

s0D
λ −Ds0(λ)s0 = kθ if 〈λ,−θ〉 = 1

(vi) ωrD
λω−1

r = Dωr(λ) = Dw−1
r (λ) − 〈λ,�r∗ 〉 for r ∈ O (2.7)

where

Dλ̂ =
∑
i∈I

λiD
�∨
i − h for λ̂ =

∑
i∈I

λi�
∨
i + hK.

The degenerate double affine Hecke algebra DH contains the extended affine Weyl group W̃
which acts on the affine coroot system R̂∨. Repeated use of the defining relations of DH gives
the relations

siD
λ −Dsi(λ)si = ki〈λ, αi〉 for 1 � i � N

s0D
λ −Ds0(λ)s0 = kθ 〈λ,−θ〉. (2.8)

We define the following elements:

X−µ := τµ ∈ DH for µ ∈ P
which provide s0 = X−θ sθ∨ and ωr = X−�rw−1

r , (r ∈ O).
We introduce the commutative differential operators {D̂λ̂ ∈ End(C[P ])|λ̂ = λ + hK ∈

P̂ ∨},
D̂λ̂f := ∂λ(f ) +

∑
α∈R+

kα〈λ, α〉
xα − 1

(f − ŝα(f )) + 〈λ, ρk〉f − hf (2.9)

where {∂λ ∈ End(C[P ])|λ ∈ P ∨} is the derivative of C[P ]:

∂λ(xµ) = 〈λ,µ〉xµ for xµ ∈ C[P ]

and the elements w ∈ W act on C[P ] as

w(xµ) = xw(µ) for xµ ∈ C[P ].

We consider xµ, (µ ∈ P) as operators of multiplication of xµ. The differential operators
{D̂λ|λ ∈ P ∨} are called the Dunkl–Cherednik operators [4, 7]. One sees that a map
π : DH → End(C[P ]) defined by

π : si �→ si, (1 � i � N) Dλ̂ �→ D̂λ̂ Xµ �→ xµ (2.10)
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gives a faithful representation of DH. The Dunkl–Cherednik operators {D̂λ|λ ∈ P ∨} have the
triangularity in C[P ]:

D̂λxµ = 〈λ,µ + ρk(µ)〉xµ +
∑
ν≺µ

cµνx
ν µ ∈ P cµν ∈ K (2.11)

where we denote by wµ the shortest element of W such that w−1
µ (µ) ∈ P+ and define

ρk(µ) := wµ(ρk). The order � on P is defined by

ν � µ, (µ, ν ∈ P)⇔
{

if µ+ �= ν+ then ν+ < µ+

if µ+ = ν+ then ν � µ.
(2.12)

3. Nonsymmetric Heckman–Opdam polynomials

We investigate the eigenvectors of the Dunkl–Cherednik operators {D̂λ|λ ∈ P ∨}. Due to the
triangularity (2.11), there exists a family of polynomials Fµ := Fµ(x; {kα}) ∈ C[P ], (µ ∈ P)
satisfying the following conditions:

(i) Fµ = xµ +
∑
ν≺µ

wµνx
ν wµν ∈ C

(ii) D̂λFµ = 〈λ,µ + ρk(µ)〉Fµ.
(3.1)

Fµ are the nonsymmetric Jacobi polynomials introduced by Heckman and Opdam. Hereafter,
we call them the nonsymmetric Heckman–Opdam polynomials. Note that all the eigenspaces
of the Dunkl–Cherednik operators {D̂λ|λ ∈ P ∨} are one-dimensional. Applying {si ∈
End(C[P ])|i ∈ I } to the nonsymmetric Heckman–Opdam polynomials Fµ, (µ ∈ P), we
see that

siFµ =




ki

〈α∨
i , µ + ρk(µ)〉Fµ + Fsi(µ) if 〈α∨

i , µ〉 < 0

Fµ if 〈α∨
i , µ〉 = 0

ki

〈α∨
i , µ + ρk(µ)〉Fµ +

〈α∨
i , µ + ρk(µ)〉2 − k2

i

〈α∨
i , µ + ρk(µ)〉2

Fsi(µ) if 〈α∨
i , µ〉 > 0.

(3.2)

We introduce intertwiners in DH to provide the Rodrigues formulae for the nonsymmetric
Heckman–Opdam polynomials. These intertwiners were first considered in the context of
the Hecke algebras. The intertwiners in DH were developed by Cherednik [6, 28]. With
their use, Opdam derived the evaluation formulae of the nonsymmetric Heckman–Opdam
polynomials [26]. We construct the Rodrigues formulae for the nonsymmetric Heckman–
Opdam polynomials and algebraically evaluate their square norms.

Definition 3.1. (i) We define {Ki ∈ DH|i ∈ Î } by

K0 := sθX
θDα∨

0 − kθ Ki := siD
α∨
i − ki (3.3)

which we call the intertwiners.
(ii) For a reduced expression w = ωrsil . . . si2si1 ∈ W̃ , we define Kw := ωrKil . . . Ki2Ki1(∈

DH). In particular, we write Bµ := Kτ−µ for µ ∈ P+. We call {B̂µ := π(Bµ) ∈
End(C[P ])} the raising operators.

The elements {Kw|w ∈ W̃ } have the following relations:

(i) KiKjKi . . . = KjKiKj . . . , mij factors on each side

ωrKiω
−1
r = Kj if ωr(α

∨
i ) = α∨

j

(ii) K2
i = −(Dα∨

i )2 + k2
i for i ∈ Î

(iii) KwD
λ = Dw(λ)Kw for λ ∈ P ∨. (3.4)
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The first relations in (3.4) are called the braid relations. The last relations give the reason why
they are called intertwiners. For the elements {Bµ ∈ DH}, we can show that

BµD
λ = Dτ−µ(λ)Bµ = (Dµ − 〈λ,µ〉)Bµ. (3.5)

By applying the raising operators B̂µ to the nonsymmetric Heckman–Opdam polynomials
Fν, (ν ∈ P+), we obtain

D̂λ(B̂µFν) = B̂µ(D̂
λ + 〈λ,µ〉)Fν = 〈λ,µ + ν + ρk〉(B̂µFν). (3.6)

Hence B̂µFν coincides with Fµ+ν up to a constant factor. If we apply K̂w := π(Kw), (w ∈ W)

to Fµ, (µ ∈ P+), we see that

D̂λ(K̂wFµ) = K̂wD̂
w−1(λ)Fµ = 〈w−1(λ), µ + ρk〉K̂wFµ = 〈λ,w(µ + ρk)〉(K̂wFµ). (3.7)

Hence K̂wFµ coincides with Fw(µ) up to a constant factor.

Theorem 3.2 (Rodrigues formulae). (i) For a dominant weight µ ∈ P+, we construct
the nonsymmetric Heckman–Opdam polynomials Fµ by applying the raising operators
{B̂µ|µ ∈ P+} to the reference state F0 = 1,

Fµ = c−1
µ B̂µF0 (3.8)

where the coefficient of the top term is given by

cµ =
∏

α∨∈R∨
τ−µ

〈α∨, ρk〉.

(ii) For a general weight µ ∈ P , we construct the nonsymmetric Heckman–Opdam
polynomials Fµ by applying the operator K̂wµ

, (wµ ∈ W,w−1
µ (µ) =: µ+ ∈ P+) to

Fµ+ ,

Fµ = c−1
wµ
K̂wµ

Fµ+ (3.9)

where the coefficient of the top term is

cwµ
=

∏
α∨∈R∨

wµ

〈α∨, µ+ + ρk〉2 − k2
α

〈α∨, µ+ + ρk〉 .

See our previous paper [23] for the detailed proofs for the coefficients of the top terms appearing
in the Rodrigues formulae.

In the remainder of this paper, we assume kα � 0, (α ∈ R). Define the inner product
〈·,·〉k by

〈f, g〉k :=
∫
T

f (t)g(t)9k(t) dµ (3.10)

where T = V/2πQ∨ is a torus, xµ(t) := e
√−1〈t,µ〉, (t ∈ T ), dµ is the normalized Haar

measure on T and the weight function 9k is given by

9k :=
∏
α∈R

|1 − xα|kα . (3.11)

The square norm of the reference state is given by

〈1, 1〉k =
∏
α∈R+

$(〈α∨, ρk〉 + kα + 1)$(〈α∨, ρk〉 − kα + 1)

$(〈α∨, ρk〉 + 1)2
(3.12)
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which is indeed evaluated from Opdam’s shift operators [25]. Since the Dunkl–Cherednik
operators {D̂λ} are selfadjoint with respect to the inner product 〈·,·〉k (3.10), we have the
orthogonality

〈Fµ, Fν〉k = 0 if µ �= ν. (3.13)

In fact, the nonsymmetric Heckman–Opdam polynomials form an orthogonal basis in C[P ]
with respect to the inner product 〈·,·〉k (3.10). We see that the adjoint operators of {ωr, K̂i |r ∈
O, i ∈ Î } are given by

ω∗
r = ω−1

r K̂∗
i = −K̂i . (3.14)

Theorem 3.3. For a dominant weight µ ∈ P+, we have

〈Fµ, Fµ〉k =
∏
α∈R+

$(〈α∨, µ + ρk〉 + kα + 1)$(〈α∨, µ + ρk〉 − kα + 1)

$(〈α∨, µ + ρk〉 + 1)2
. (3.15)

Proof. Define N(α̂∨) ∈ DH, (α̂∨ = α∨ + kK ∈ R̂∨) by

N(α̂∨) := (Dα∨
)2 − k2

α. (3.16)

Since they satisfy the following properties:

N(α̂∨
i ) = −K2

i KwN(α̂
∨) = N(w(α̂∨))Kw for w ∈ W̃

the product B̂∗
µB̂µ ∈ End(C[P ]) is written as

B̂∗
µB̂µ = ωrK̂

∗
il
. . . K̂∗

i1
K̂i1 . . . K̂ilω

∗
r

= ωrK̂
∗
il
. . . K̂∗

i2
N̂(α∨

i1
)K̂i2 . . . K̂ilω

−1
r

=
∏

α∨∈R∨
τ−µ

N̂(α∨)

where N̂(α∨) := π(N(α∨)). The square norms of Fµ are calculated as

〈Fµ, Fµ〉k = 〈c−1
µ B̂µF0, c

−1
µ B̂µF0〉k

= (cµ)
−2〈F0, B̂

∗
µB̂µF0〉k

= (cµ)
−2

∏
α∨∈R∨

τ−µ

〈F0, N̂(α
∨)F0〉k

= 〈F0, F0〉k
∏

α∨∈R∨
τ−µ

〈α∨, ρk〉2 − k2
α

〈α∨, ρk〉2

= 〈1, 1〉k
∏
α∈R+

〈α∨,µ〉∏
i=1

(〈α∨, ρk〉 + k + i)(〈α∨, ρk〉 − k + i)

(〈α∨, ρk〉 + i)2
.

�

Proposition 3.4. For a weight µ ∈ P lying in the W -orbit of µ+ ∈ P+, we have

〈Fµ, Fµ〉k
〈Fµ+ , Fµ+〉k =

∏
α∨∈R∨

wµ

〈α∨, µ+ + ρk〉2

〈α∨, µ+ + ρk〉2 − k2
α

. (3.17)
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Proof. For a reduced expression wµ = sil si2 . . . si1 , we have

K̂∗
wµ
K̂wµ

= K̂∗
il
. . . K̂∗

i2
K̂∗
i1
K̂i1K̂i2 . . . K̂il

= K̂∗
il
. . . K̂∗

i2
N̂(α∨

i1
)K̂i2 . . . K̂il

=
∏

α∨∈R∨
wµ

N̂(α∨).

From the Rodrigues formula (3.9), we calculate the scalar product as follows:

〈Fµ, Fµ〉k = 〈c−1
wµ
K̂wµ

Fµ+ , c−1
wµ
K̂wµ

Fµ+〉k
= (cwµ

)−2〈Fµ+ , K̂∗
wµ
K̂wµ

Fµ+〉k
= (cwµ

)−2
∏

α∨∈R∨
wµ

〈Fµ+ , N̂(α∨)Fµ+〉k

= (cwµ
)−2〈Fµ+ , Fµ+〉k

∏
α∨∈R∨

wµ

(〈α∨, µ+ + ρk〉2 − k2
α).

�

4. Bosonic and fermionic eigenstates for generalized Sutherland models

The generalized Sutherland models associated with arbitrary reduced root systems are given
by

HS :=
∑
i∈I

∂�
∨
i ∂αi −

∑
α∈R+

〈α, α〉
(xα/2 − x−α/2)2

kα(kα − sα). (4.1)

Using the variables {t ∈ T }, this is rewritten as

HS(t) = −� +
1

4

∑
α∈R+

〈α, α〉
sin2(〈t, α〉/2)kα(kα − sα) (4.2)

where � is the Laplacian on T . The Hamiltonian has so-called exchange terms [1]. If we
consider the bosonic (or fermionic) eigenstates, i.e., we restrict the operand of HS to the
W -symmetric (or W -anti-asymmetric) function space, we can replace the exchange terms by
sα = 1 (or −1),

H
(B,F)
S =

∑
i∈I

∂�
∨
i ∂αi −

∑
α∈R+

〈α, α〉
(xα/2 − x−α/2)2

kα(kα ∓ 1). (4.3)

Through the similarity transformation by a W -symmetric function

φk :=
∏
α∈R

|1 − xα|kα/2 (4.4)

we obtain

φ−1
k ◦HS ◦ φk =

∑
i∈I

D̂�∨
i D̂αi . (4.5)

Hence we see thatHS has the eigenvectors in C[P ]φk written by products of the nonsymmetric
Heckman–Opdam polynomial Fµ and φk . We note that φk corresponds to the ground
state wavefunction for the bosonic Hamiltonian H(B)

S . Since the nonsymmetric eigenstates
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expressed by products of φk and the nonsymmetric Heckman–Opdam polynomials with
weights lying in the same W -orbit have the same eigenvalues of HS,

HS(φkFµ) =
∑
i∈I

〈�∨
i , µ + ρk(µ)〉〈αi, µ + ρk(µ)〉(φkFµ)

= 〈µ + ρk(µ), µ + ρk(µ)〉(φkFµ)
= 〈µ+ + ρk, µ

+ + ρk〉(φkFµ) (4.6)

we can take any linear combinations of φkFµ with weights lying in aW -orbit as eigenvectors of
HS (see [1] for typeA). In what follows, we construct the bosonic and fermionic eigenstates of
the generalized Sutherland modelsH(B,F)

S from theW -symmetrized andW -anti-symmetrized
nonsymmetric Heckman–Opdam polynomials, respectively.

Theorem 4.1. Let J +
µ, (µ ∈ P+) and J−

µ , (µ ∈ P++) be the following linear combinations of
the nonsymmetric Heckman–Opdam polynomials Fµ̃, (µ̃ ∈ W(µ)):

J±
µ =

∑
µ̃∈W(µ)

b±
µµ̃
Fµ̃ (4.7)

where

b±
µµ̃

=
∏

α∨∈R∨
wµ̃

±〈α∨, µ + ρk〉 ∓ kα

〈α∨, µ + ρk〉 . (4.8)

The polynomials J +
µ, (µ ∈ P+) and J−

µ , (µ ∈ P++) are elements of C[P ]±W and called the
symmetric and the anti-symmetric Heckman–Opdam polynomials respectively.

It is sufficient to require the conditions siJ±
µ = ±J±

µ and b±µµ = 1 in order to determine
the coefficients b±

µµ̃
such that J±

µ ∈ C[P ]±W .
The symmetric Heckman–Opdam polynomials of typeA are equivalent to the (symmetric)

Jack polynomials. Symmetrization of the nonsymmetric Jack polynomials was carried out by
Baker and Forrester [2]. We remark that their method with arm- and leg-lengths of the Young
diagram is essentially different from our approach.

We obtain the Rodrigues formulae for the symmetric and the anti-symmetric Heckman–
Opdam polynomials J±

µ , (µ ∈ P+ for J +
µ and µ ∈ P++ for J−

µ ),

J±
µ =

∑
µ̃∈W(µ)

b±
µµ̃
c−1
wµ̃
c−1
µ K̂wµ̃

B̂µF0. (4.9)

As a result, we find the bosonic and the fermionic eigenstates φ(B,F )µ , (µ ∈ P+ for φ(B)µ and

µ ∈ P++ for φ(F)µ ) for the generalized Sutherland models H(B,F)
S ,

φ(B,F )µ = φk
∑

µ̃∈W(µ)

b±
µµ̃
c−1
wµ̃
c−1
µ K̂wµ̃

B̂µF0

H
(B,F)
S φ(B,F )µ = 〈µ + ρk, µ + ρk〉φ(B,F )µ

(4.10)

respectively. Lapointe and Vinet obtained the Rodrigues formulae for the Jack
polynomials [15]. The relation between our formulae (4.9) and theirs has not been clarified.

We proceed to the evaluation of square norms of the eigenstates φ(B,F ),

‖φ(B,F )µ ‖2 =
∫
T

|φ(B,F )µ (t)|2 dµ = 〈J±
µ , J

±
µ 〉k. (4.11)

To prove a theorem, we need the following lemma.
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Lemma 4.2. For µ ∈ P+, we have an identity,∑
µ̃∈W(µ)

∏
α∨∈R∨

wµ̃

〈α∨, µ + ρk〉 ∓ kα

〈α∨, µ + ρk〉 ± kα
=

∏
α∈R+

〈α∨, µ + ρk〉
〈α∨, µ + ρk〉 ± kα

. (4.12)

The identity is proved by using an expression of the Poincaré polynomials [17, 23]. We show
a proof in the appendix.

Theorem 4.3. Let µ ∈ P+ for J +
µ and let µ ∈ P++ for J−

µ . We have

〈J±
µ , J

±
ν 〉k = δµν

∏
α∈R+

$(〈α∨, µ + ρk〉 ± kα)$(〈α∨, µ + ρk〉 ∓ kα + 1)

$(〈α∨, µ + ρk〉)$(〈α∨, µ + ρk〉 + 1)
. (4.13)

Proof. The orthogonality for µ �= ν is straightforward from that of the nonsymmetric
Heckman–Opdam polynomials (3.13). We have

〈J±
µ , J

±
µ 〉k =

∑
µ̃∈W(µ)

(b±
µµ̃
)2〈Fµ̃, Fµ̃〉k

=
∑

µ̃∈W(µ)

(b±
µµ̃
)2
〈Fµ̃, Fµ̃〉k
〈Fµ, Fµ〉k 〈Fµ, Fµ〉k

=
∑

µ̃∈W(µ)

∏
α∨∈R∨

wµ̃

〈α∨, µ + ρk〉 ∓ kα

〈α∨, µ + ρk〉 ± kα
〈Fµ, Fµ〉k

=
∏
α∈R+

〈α∨, µ + ρk〉
〈α∨, µ + ρk〉 ± kα

〈Fµ, Fµ〉k

where the last equality follows from lemma 4.2. �

Corollary 4.4. For kα ∈ N, we have

〈J±
µ , J

±
ν 〉k = δµ,ν

∏
α∈R+

kα−1∏
i=1

〈α∨, µ + ρk〉 ± i

〈α∨, µ + ρk〉 ∓ i
. (4.14)

We remark that the inner products (4.14) were first proved by use of Opdam’s shift
operators [25]. From (4.11) and (4.12), we obtain square norms of the eigenstates φ(B,F )µ

for the generalized Sutherland models,

‖φ(B,F )µ ‖2 =
∏
α∈R+

$(〈α∨, µ + ρk〉 ± kα)$(〈α∨, µ + ρk〉 ∓ kα + 1)

$(〈α∨, µ + ρk〉)$(〈α∨, µ + ρk〉 + 1)
. (4.15)

5. Concluding remarks

We summarize the results in this paper. First, we have presented the Rodrigues formulae for the
nonsymmetric Heckman–Opdam polynomials which correspond to the nonsymmetric basis of
the generalized Sutherland models with exchange terms. Their square norms are evaluated
in an algebraic manner. Second, through W -symmetrization and W -anti-symmetrization
of the nonsymmetric Heckman–Opdam polynomials we have constructed the bosonic and
fermionic eigenstates of the generalized Sutherland models with arbitrary reduced root systems,
respectively. The square norms of the eigenstates are calculated from their nonsymmetric
counterparts through an expression of the Poincaré polynomials.
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We consider some interesting applications and extensions of our method. The generalized
Sutherland models we have studied in this paper do not include the models associated with the
BCN -type nonreduced root system. Since we have already obtained the Rodrigues formulae
for the nonsymmetric Heckman–Opdam polynomials of type BCN [22, 27, 34], the extension
should be straightforward. And it is known that there exists the symmetric orthogonal basis
for the Calogero model which describes many particles with inverse-square interactions in a
harmonic well [20, 32–34]. We have already confirmed that our method can be applied to the
eigenstates of the Calogero model. The detail of the analysis will be reported elsewhere.
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Appendix. Proof of lemma 4.2

We present a proof of lemma 4.2 following our previous paper [23].
The Poincaré polynomials associated with the Weyl group [10] are given by

W(t) =
∑
w∈W

∏
α∈Rw

tα (A.1)

where {tα|α ∈ R} are W -invariant indeterminates, i.e., tα = tw(α) for w ∈ W . We denote by
K the field of rational functions over C in square-roots of indeterminates {tα}. To investigate
the Poincaré polynomials, Macdonald proved the following identity [17].

Theorem A.1 (I G Macdonald).

W(t) =
∑
w∈W

∏
α∈R+

1 − tαx
w(α∨)

1 − xw(α
∨) . (A.2)

Lemma A.2. Let µ ∈ P+. We have∑
µ̃∈W(µ)

∏
α∨∈R∨

wµ̃

tα(1 − t−1
α q±〈α∨,µ+ρk〉)

1 − tαq±〈α∨,µ+ρk〉 = W(t)
∏
α∈R+

1 − q±〈α∨,µ+ρk〉

1 − tαq±〈α∨,µ+ρk〉 . (A.3)

Proof. There exists a K-homomorphism ϕ : K[Q∨] → K defined by

ϕ : xα
∨
i �→ q±〈α∨

i ,µ+ρk〉 for i ∈ I.
Since W(t) ∈ K [Q∨] does not depend on {xα∨

i } as (A.2), we have

ϕ(W(t)) = W(t)

=
∑
w∈W

∏
α∈R+

ϕ

(
1 − tαx

w(α∨)

1 − xw(α
∨)

)

=
∑
w∈W

∏
α∈R+

1 − tαq
±〈w(α∨),µ+ρk〉

1 − q±〈w(α∨),µ+ρk〉

=
∑

w∈W
∏

α∨∈R∨
w
(tα − q±〈α∨,µ+ρk〉)

∏
α∨∈R∨

+ \R∨
w
(1 − tαq

±〈α∨,µ+ρk〉)∏
α∈R+

(1−q±〈α∨,µ+ρk〉)
.



3806 A Nishino and M Wadati

Thus we obtain the following relation:∑
w∈W

∏
α∨∈R∨

w

tα(1 − t−1
α q±〈α∨,µ+ρk〉)

1 − tαq±〈α∨,µ+ρk〉 = W(t)
∏
α∈R+

1 − q±〈α∨,µ+ρk〉

1 − tαq±〈α∨,µ+ρk〉 . (A.4)

We show that the sum on the left-hand side of the above equation can be replaced by the sum
on µ̃ ∈ W(µ). Consider the isotropy group Wµ = {w ∈ W |w(µ) = µ} for the dominant
weight µ ∈ P+ (Wµ = {1} for µ ∈ P++). Since an element w ∈ Wµ \ {1} can be written by a
product of simple reflections fixingµ, {si |i ∈ J ⊂ I }(see [10]), there exists at least one simple
root α∨

i ∈ �∨ associated with the reflection si in the set R∨
w. Hence, for w ∈ Wµ \ {1}, we

have∏
α∨∈R∨

w

tα(1 − t−1
α q〈α

∨,µ+ρk〉) = ti(1 − t−1
i q〈α

∨
i ,ρk〉)

∏
α∨∈R∨

w\{α∨
i }
tα(1 − t−1

α q〈α
∨,µ+ρk〉)

= ti(1 − t−1
i ti )

∏
α∨∈R∨

w\{α∨
i }
tα(1 − t−1

α q〈α
∨,µ+ρk〉) = 0.

Define Wµ := {w ∈ W |l(wsi) > l(w) for all i ∈ J }. For w ∈ W , there is a unique u ∈ Wµ

and a unique v ∈ Wµ such that w = uv. We obtain the above lemma since the sum on w ∈ W
on the left-hand side of (A.4) can be replaced by that on w ∈ Wµ which is equivalent to that
on µ̃ ∈ W(µ). �

In the formal limit q → 1 under the restriction tα = qkα , we have relation (4.12) in
lemma 4.2.
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